

Data Analytics Using Excel Microsoft 365

With Accounting and Finance Datasets Version 3.0

Joseph M. Manzo

Data Analytics Using Excel Microsoft 365: With Accounting and Finance Datasets Version 3.0

Joseph M. Manzo

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS ABOUT THE SUITABILITY OF THE SERVICES OR THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE, ALL SERVICES, DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE SERVICES, INFORMATION AND RELATED GRAPHICS, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE SERVICES, INCLUDING THE USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES.

THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED ON THE SERVICES COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN, MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME.

IN NO EVENT SHALL MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THE SERVICES, SOFTWARE, DOCUMENTS, PROVISION OF OR FAILURE TO PROVIDE SERVICES, OR INFORMATION AVAILABLE FROM THE SERVICES.

MICROSOFT EXCEL® IS A REGISTERED TRADEMARK OF THE MICROSOFT CORPORATION IN THE USA AND OTHER COUNTRIES. THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED WITH THE MICROSOFT CORPORATION.

Published by:

FlatWorld 292 Newbury Street Suite #282 Boston, MA 02115-2832

© 2022 by Boston Academic Publishing, Inc. d.b.a. FlatWorld All rights reserved. Your use of this work is subject to the License Agreement available at https://catalog.flatworldknowledge.com/legal.

No part of this work may be used, modified, or reproduced in any form or by any means except as expressly permitted under the License Agreement.

Gen: 202303281905

Brief Contents

About the Aut	thor
Acknowledgn	nents
Dedication	
Preface	
Chapter 1	Introduction to Data Analytics and Microsoft Excel 365
Chapter 2	Essential Skills for Basic Data Analytics Projects
Chapter 3	Data Analytics Techniques for Basic Projects
Chapter 4	Using Mathematical Outputs for Analytics
Chapter 5	Scenario Analytics
Chapter 6	Exception Analytics
Chapter 7	Summarizing Exception Analytics
Chapter 8	Working with Big Datasets Case: Investigating Fraud
Chapter 9	Charts for Presentations and Data Visualization
Chapter 10	Predictive Analytics Case: Can You Predict the Stock Market?
Appendix A	Keyboard Only Commands from PC to Mac
Appendix B	Visual Differences between PC and Mac
Appendix C	Command and Feature Differences on a Mac
Appendix D	Command and Feature Omissions on a Mac
Index	

Contents

About the A	uthor		•
Acknowledg	gments		3
Dedication			Ę
Preface			7
Chapter 1	Introdu	uction to Data Analytics and Microsoft Excel 365	11
	1.1	A Working Model for Data Analytics	11
		What Is Data Design?	11
		The DATA Analytics Framework	13
		Conducting a Data Audit	14
		Establishing Data Internal Controls	14
		The Data Analytics Model	15
		Limitations of Data Analytics	15
	1.2	A Review of Excel 365	16
		Launching Microsoft Excel 365	17
		The Excel Workbook	19
		Navigating Excel Worksheets	20
		The Excel Ribbon	22
		Quick Access Toolbar and Right-Click Menu	23
		The Backstage View	25
		Saving Workbooks (Save As)	26
		Saving and Sharing Workbooks in the Cloud	28
		Worksheet Headers and Footers	32
		Page Layout for Printing Worksheets	34
		Printing Worksheets	36
		Excel Help	36
		Keyboard Only Commands	37
	1.3	Chapter Assignments and Tests	39
Chapter 2	Essential Skills for Basic Data Analytics Projects		
	2.1	Entering and Managing Data	45
		Basic Data Audit	46
		Entering Data	48
		Cut, Copy, and Paste	49
		Auto Fill	50
		Moving Data	52
		Deleting Data and the Undo Command	53
		Editing Data	55

		Hiding Columns and Rows	56
		Inserting Columns and Rows	59
		Deleting Columns and Rows	60
		Adjusting Columns and Rows	62
		Inserting and Deleting Worksheets	66
	2.2	Formatting Worksheets	70
		Wrap Text	71
		Center Alignment	72
		Merge Cells	73
		Entering Multiple Lines of Text	75
		Formatting Data and Cells	76
		Borders (Adding Lines to a Worksheet)	80
		Formatting Worksheet Tabs	82
	2.3	Chapter Assignments and Tests	85
Chapter 3	Data A	nalytics Techniques for Basic Projects	93
	3.1	Introduction to Data Visualization	93
		The Treemap Chart	94
		Changing the Title of a Chart	97
		The Chart Sheet	97
		Sorting Data (Single-Level)	100
		Sorting Data (Multi-Level)	103
	3.2	Introduction to PivotTables and PivotCharts	105
		Creating a PivotTable	105
		Sorting a PivotTable	109
		Formatting a PivotTable	112
		Creating a PivotChart	117
		Moving and Resizing Charts	119
		Adding a PivotChart Filter	120
		Basic Data Internal Controls	122
	3.3	Chapter Assignments and Test	124
Chapter 4	Using I	Mathematical Outputs for Analytics	133
	4.1	Formulas	133
		Freeze Panes	134
		Cell References	136
		Relative References	138
		Formulas	139
		Paste Formulas	141
		Complex Formulas	144
		Auditing Formulas	146
	4.2	Basic Statistics Functions	149
		SUM Function	150
		Absolute References	152
		AVERAGE Function	156
		MAX and MIN Functions	159
		COUNTA and COUNT Functions	163

		Conditional Formats for Data Visualization	165
	4.0	Conditional Formats for Data Internal Controls	169
0	4.3	Chapter Assignments and Test	174
Chapter 5		rio Analytics	185
	5.1	Loan and Lease Scenarios	185
		Loan Concepts and Terms	186
		PMT Function for Loans	187
		Referencing Data Between Worksheets	194
		Dates and EOMONTH (End of Month) Function	196
		The YEAR Function	200
		The TEXT Function	201
		Data Audit for Loan Amortization Schedule	203
		PMT Function for Leases	206
		Worksheet Protection for Data Internal Control	209
	5.2	Investment Scenarios	215
		Time Value of Money Terms and Concepts	215
		The FV (Future Value) Function	217
		Evaluating Scenarios with Goal Seek	222
		The PV (Present Value) Function	224
	5.3	Chapter Assignments and Test	230
Chapter 6	Exception Analytics		243
	6.1	Logical Functions	243
		Adding Capacity to Functions	244
		The Logical Test	246
		IF Function	247
		Nested IF Function	251
		The AND Function	254
		The OR Function	259
	6.2	Lookup Functions	263
		VLOOKUP Function	263
		HLOOKUP Function	270
		Data Visualization for Exception Analytics	274
		Data Internal Controls Using the ISBLANK and IF Functions	278
	6.3	Chapter Assignments and Test	282
Chapter 7	Summa	289	
	7.1	Statistical IF Functions	289
		The COUNTIF Function	290
		The AVERAGEIF Function	292
		The SUMIF Function	295

	7.2	Statistical IFS Functions	300
		The COUNTIFS Function	300
		The AVERAGEIFS Function	305
		The SUMIFS Function	308
		The CONCATENATE Function	312
	7.3	Chapter Assignments and Test	315
Chapter 8	Workin	g with Big Datasets Case: Investigating Fraud	323
	8.1	Using the DATA Analytics Framework	323
		Case: Investigating Fraud	323
		Assessing the Case	324
	8.2	Data Audit Using PivotTables	326
		Navigating Big Datasets with the Keyboard	327
		PivotTables for Basic Data Audits	329
		PivotTable Outputs	331
		PivotTable Filters	335
		PivotTable Calculated Fields	341
	8.3	Analyzing the Data	345
		RIGHT Text Function	345
		WEEKNUM Function	347
		Using the IF Function to Eliminate Repeating Values	348
		The ABS (Absolute Value) Function	352
		The ISERROR Function	354
		Solving the Case	355
	8.4	Summarizing Big Datasets in Custom Reports	362
		Excel Spell Check	362
		Adding Notes to Cell Locations	364
		Using Functions with Big Datasets	366
		Selecting Data with Statistical IF and IFS Functions	368
		Mixed References	373
	8.5	Establishing Data Internal Controls	377
		READ ME Worksheet	378
		Setting Capacity Alerts	380
		Worksheet Protection	381
	8.6	Chapter Assignments and Test	382
Chapter 9	Charts for Presentations and Data Visualization		
	9.1	Chart Types	387
		Line Charts for Time Series Trends	388
		Adjusting the Y Axis Scale	391
		Line Charts for Trend Comparisons	393
		Pie Charts for Percent of Totals	395
		Stacked Column Chart for Percent of Total Trends	399
		Adding Series Lines and Annotations	402
		Column Charts for Frequency Distributions	407
		Frequency Comparison: Controlling Values Assigned to X and Y Axes	409

	9.2	Formatting Enhancements for Charts	415
		Formatting the X and Y Axis Values	415
		Formatting the Chart Legends and Titles	417
		Adding X and Y Axis Titles	420
		Data Series Formats and Labels	423
		Visual Enhancements for the Plot and Chart Areas	426
	9.3	Using Charts in PowerPoint and Word	429
		Creating a Chart Link Between Excel and PowerPoint	429
		Pasting a Chart Image into Word	432
	9.4	The Scatter Chart and Motion Data Visualization	436
		Scatter Chart for Supply and Demand	436
		Changing the Scale of the X and Y Axes	442
		Adding a Trendline and Equation	444
	9.5	Chapter Assignments and Test	448
Chapter 10	Predicti	ive Analytics Case: Can You Predict the Stock Market?	457
	10.1	Assessing the Case	457
		Case: Can You Predict the Stock Market?	457
		Establish the DATA Analytics Framework	458
	10.2	Preliminary Analysis: Examining Assumptions	459
		Adding Data Analysis Tools	460
		Data Design and Audit	463
		Descriptive Statistics	466
		Correlation	471
		Examining Correlation Through Data Visualization: The Combo Chart	476
		Formatting Bars for Negative Values on a Column Chart	479
		Identifying Exceptions	482
	10.3	Solving the Case	485
		Empirical Probability	485
		Regression	491
		Interpreting a Regression Output	499
		Comments and Other Data Internal Controls	502
	10.4	Case Wrap Up: Prediction versus Reality	505
		Appending Data	506
		Updating the Analysis	507
		Limitations of Predictive Analytics	510
		Epilogue: A New Paradigm?	511
	10.5	Chapter Assignments and Tests	513
Appendix A	Keyboa	ard Only Commands from PC to Mac	523
Appendix B	Visual [Differences between PC and Mac	525
	B.1	Visual Differences on the Ribbon	525
	B.2	ToolTip and Dialog Box Differences	526
Appendix C	Comma	and and Feature Differences on a Mac	531
	C 1	Accessing Backstage Commands	53 ⁻

Index			547
Appendix D	Comma	and and Feature Omissions on a Mac	545
	C.6	Conditional Formatting: New Formatting Rule	542
	C.5	Charts: Assigning Data to X and Y Axes	539
	C.4	Sorting Data in a PivotTable	537
	C.3	Multi-Level Sorting	535
	C.2	The Right-Click Menu	534

About the Author

Joseph M. Manzo

Joseph M. Manzo (CMA and MBA Lehigh University) is a Professor of Practice in Accounting at Lehigh University's College of Business. He started teaching at Lehigh in fall 2002, where he developed and ran the Microsoft Excel Competency program for all first-year business students. He went on to teach several courses in both the undergraduate and graduate programs in the College of Business and since 2010 has taught Introduction to Financial Accounting and Introduction to Managerial Accounting. In addition to teaching, he is a former director of the Rauch Center for Business Communications and also former acting Associate Dean and Director of Undergraduate Programs for the College of Business. Prior to Lehigh, Professor Manzo worked in apparel manufacturing, retail, and wealth management industries. His industry practice had a heavy emphasis on data analytics and corporate strategic planning. He has written several textbooks addressing practical applications for Microsoft Office that teach students how to use such applications for professional and personal needs.

2	Data Analytics Using Excel Microsoft 365

Acknowledgments

I could not have written this book without the support of my wonderful family. A huge thank you to my wife, Julie, and my children, Isaac and Stella.

Also, this book would not have been possible without the support of Lindsey Kaetzel. Her outstanding project management skills are extremely appreciated in helping me stay on track and finish this edition.

I would also like to thank Sean Wakely for his work and enthusiastic support in getting this project started. I have enjoyed our many strategic conversations. Additionally, a sincere thank you to my assistant Dylan Condon. I appreciate his outstanding work ethic and reliability throughout the 2019–20 academic year.

Finally, I would like to thank the following reviewers, whose comprehensive feedback and suggestions for improving the material helped make this a better textbook:

- · Jason Sharp, Virginia Tech
- Les M. Sztandera, PhD, Thomas Jefferson University
- Yilong 'Eric' Zheng, Merrimack College
- · Orhan Erdem, Rockford University
- Sidney Shapiro, Professor, Business Analytics, Cambrian College

Thanks also to the reviewers of the previous versions of this textbook:

- · Lynn D. Blankenship, University of Tennessee Chattanooga
- Terri L. Holly, Indian River State College
- David C. Kimball, Elms College
- · Linda Kropp, Modesto Junior College
- Wiley Allen White, Bacone College
- Ling Zhu, Long Island University Post Campus
- Steve Borga, Ohio State University, Lima Campus
- Paul Dominguez, Long Island University, C.W. Post Campus
- Richard W. Evans, Rhode Island College
- David Eve, Massachusetts College of Liberal Arts
- Jane Hammer, Valley City State University
- Heith Hennel, Valencia Community College
- Irene Joos, La Roche College
- · Linda Lau, Longwood University
- Audrey Lawrence, Palm Beach State College
- Frederick Lawrence, Queens College, The City University of New York
- Steven Leventhal, Queens College, The City University of New York
- Charles Lundin, Richland College
- · Orin Marvin, John Carroll University
- Stephen Pomeroy, Norwich University
- · Leonard Presby, William Paterson University
- · Leslie Rist, Lewis-Clark State College
- · Jeffrey Rufinus, Widener University

- 4 Data Analytics Using Excel Microsoft 365
 - Elaine Stredney, Kent State University
 - Priscilla Truesdell, Palo Alto College

Dedication

For my children, Isaac and Stella With hard work and passion, anything is possible. Life cannot kill the dreams you dream.

Preface

Data Analytics Using Microsoft Excel provides students with a strong foundation of skills that are needed to become proficient in data analytics. Microsoft Excel is the ideal platform for students who are in the early stages of learning the fundamentals of data analytics. The ability to visually observe the architecture of several datasets in Excel is a great advantage when learning how to use data analytics techniques to produce solutions for both professional and personal projects. Having an understanding and the ability to visualize a variety of data architectures is vital for students who intend to go on to study other data analytics platforms beyond Excel. Extensive datasets included in the book are drawn from accounting and finance scenarios and provide students with a basis for conceptualizing and designing data analytics projects with the highest level of integrity. As a result, this textbook is suitable as either a core text for using Excel in an introductory data analytics course or as a supplement to many basic through intermediate accounting or finance courses. This textbook may also be assigned to students who need exposure or a refresher on how to use the Excel application in general. This clear, easy-to-follow text prepares students to master advanced Excel skills and places a heavy emphasis on how to efficiently navigate big datasets by using the keyboard to access commands during the design process. In addition, data visualization is presented throughout the textbook as a powerful data analytics technique as well as a method for communicating data using a variety of charts. Author-narrated videos embedded throughout the digital reader explain concepts and operations, adding an engaging audio and visual richness to the written explanations and exercises.

Key features include:

- Early chapters explain how to conceptualize, design, and maintain the integrity of data analytics projects in any context, not just finance or accounting.
- Compatible with general technology courses that are not content specific.
- Can be used stand-alone or as a supplemental resource, depending on the context.
- Datasets and projects are compatible with many accounting and finance courses, but can also support an interdisciplinary focus.
- Clearly and simply walks students through core concepts. No prior accounting or finance coursework is required.
- Provides students with a framework and model for conducting data analytics projects in any platform, not just Excel.

What's New in Version 3.0

- This version is updated to align with Excel Microsoft 365.
- New Chapter 10 on predictive analytics features nine new Excel skills and a new applied stockmarket analysis case.
- New appendixes identifying the differences between Excel run on a PC and a Mac includes the following:
 - Keyboard only command translation from PC to Mac.
 - Visual differences between a PC and Mac.
 - Instructions for Mac users where commands significantly differ between a PC and Mac.

- New skills and features include:
 - · Correlation Analysis
 - Regression
 - · Combo Chart
 - Descriptive Statistics
 - Adding the Data Analysis Tools
 - Formatting Negative Values on a Chart
 - Comments Tool
- Author-generated instructional videos have all been re-recorded from scratch with new screenshots and voice overs to reflect Excel Microsoft 365.
- Framework and model for conducting data analytics projects using any platform is presented and applied throughout the textbook.
- The concept of data visualization as a data analytics technique and way of presenting data is reinforced throughout the textbook.
- Capstone chapter where students investigate a fraud case by analyzing over 30,000 rows of data.

Supplements

- **Test Item Files**: Each comprehensive Test Item File includes several multiple-choice and short-answer questions. The items have been written specifically to reinforce the major chapter topics.
- **FlatWorld Homework**: Provided in an easy-to-use interface, homework for this title includes multiple choice and fill-in-the-blank question types which are all auto-gradable. Students who complete these questions with success should see their performance transfer to examinations that are given using the Test Item File questions provided to adopters of this textbook.
- **Online Quizzes**: Carefully written quiz questions are available by section and by chapter in the online eBook. Students can test themselves on their comprehension as they move through the textbook or once they have completed a chapter.
- Instructor's Manual: This component includes an outline that reviews the major points of the textbook
- **PowerPoint Slides**: These slides provide a concise outline for the chapter and include key terms. Instructors can use the slides as composed to support lectures or augment and customize them to suit their particular needs and interests.
- Other Supplements: All of the Text Files that students will need to use as Follow Along Files and the End of Chapter solutions are also included as supplemental material.
 - Follow Along Files: Each project that is covered in the textbook has a follow along file. Follow along files that end with a zero after the decimal point are intended to be posted for students. Students can also access these files at point of use directly from this textbook. However, follow along files that end with a number greater than zero after the decimal point should **not** be posted for students. For example, Data Analytics Project 4.5 should not be made available to students unless you are skipping the first four topics for this project. This follow along file will have all of the work completed for the first four topics of this project. This allows you to skip certain topics within each project if desired. Instructors can access all of the follow along files by downloading the "Manzo_Excel_v3_0_Text_Files.zip" file from the Other Supplements category of the catalog page.

Preface 9

• Chapter Assignment and Test Files: Each of the end of chapter assignment and test files can be accessed by students at point of use in this textbook. Instructors can also access these files by downloading the "Manzo_Excel_v3_o_End_of_Chapter_Exercise_Files.zip" file from the Other Supplements category of the catalog page.

• End of Chapter Exercise and Test Solution Files: Instructors can access all of the solution files for the exercises and tests at the end of each chapter by downloading the "Manzo_Excel_v3_o_End_of_Chapter_Exercise_Solutions.zip" file from the Other Supplements category of the catalog page.

CHAPTER 1

Introduction to Data Analytics and Microsoft Excel 365

Data analytics skills are highly valued in many professional environments. Put simply, **data analytics** is the ability to analyze data to produce information that can be used to make decisions. While there are many tools that can be used to analyze data, Microsoft Excel is perhaps the most common. Having the ability to use Excel is a tremendous asset for anyone seeking employment or looking to advance to higher positions in a variety of careers. In addition to its value in professional environments, Excel also provides significant personal value. From managing simple household budgets to complex investment portfolios, Excel can provide the same analytical powers used by professionals for personal needs. The purpose of this chapter is to develop a working model for data analytics and to provide an overview of Microsoft Excel 365.

data analytics

A comprehensive process to analyze data and produce outputs that can inform decision making.

1.1 A Working Model for Data Analytics

Learning Objectives

- 1. Establish the relationship between data design and data analytics.
- 2. Define the DATA Analytics Framework.
- 3. Identify the role of data audits when using an existing dataset or spreadsheet.
- 4. Define the concept of data internal controls for shared spreadsheets.
- 5. Review the complete Data Analytics Model.
- 6. Highlight the limitations of data analytics.

Excel is perhaps the most widely used analytics and decision making tool for both professional and personal activities. A critical success factor for getting the best results from Excel is to establish a working model for data analytics that can be used for any project. Data analytics is not just about crunching numbers. It is a comprehensive process that can change the way you think about decisions in both professional and personal situations. The Data Analytics Model shown in this chapter will establish a process that will be used throughout the textbook.

What Is Data Design?

Follow Along File: None

There is no follow along file needed for this chapter. Your first follow along file will be downloaded in Chapter 2 Section 1.

data design

The data that exists in a spreadsheet and the way in which the data is arranged.

data presentation

The way in which data is presented or visualized to an audience to explain circumstances and decisions in professional settings.

For the purposes of this textbook, **data design** will address the data you have and how it is arranged in a spreadsheet. The design of a spreadsheet will have significant ramifications for completing any analytics project using Microsoft Excel. There are many benefits for storing data in an electronic format, many of which will be explored in this textbook. However, it is important to understand that the way in which this data is entered into a spreadsheet will dictate what analytical tasks you can perform. This is not to be confused with data presentation. **Data presentation** is the way in which data is presented or visualized to an audience to explain circumstances and decisions in professional settings. Data presentation and visualization will be explored later in the textbook. To illustrate the importance of data design, Figure 1.1 shows a simple spreadsheet that could be used to analyze sales data for a small company. Suppose an analyst using this data has the following goals:

- 1. Evaluate at least two or more years of sales data to decide when the company might need to borrow money from a bank.
- 2. Decide if the company has sufficient inventory depending on sales trends.

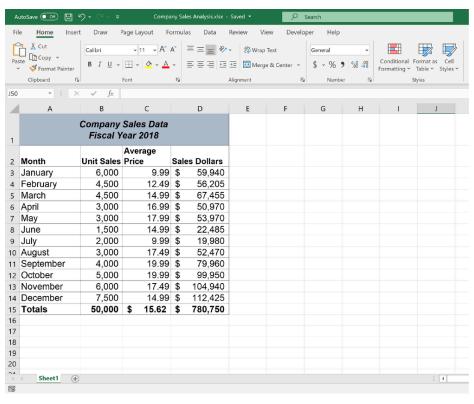


FIGURE 1.1 Data Design Example

The Data Design Example shows that data and how the data is arranged can hinder the ability to accomplish the goals identified for this project. For example, the first goal states that the analyst would like to analyze at least two or more years of data. For this project, the analyst will likely accumulate data in a spreadsheet for a few years. Placing the Totals row (row 15) at the bottom of the dataset is an inconvenient choice because blank rows will have to be added above this row when new data is added to the spreadsheet. In addition, as more data is added, you will have to scroll down to the bottom of the spreadsheet to see the totals, which is also inconvenient. Placing a Totals row above the dataset would be a better choice. Also, notice that there is no column to designate the

year for each month. This column would have to be added to the spreadsheet if more than one year of data is going to be analyzed. Finally, the second goal states that the analyst will need to evaluate the inventory needs of the company. However, there is no inventory data in the spreadsheet. This data will need to be added in order to complete the project.

The DATA Analytics Framework

Follow Along File: None

When using Excel to work on a data analytics project, there are many data design choices that have to be made. Establishing an analytics framework for a project will help you make these design choices and ultimately help produce the best possible outputs in Excel. While there are many views as to what steps should be taken to conduct an effective data analytics project, this textbook will simplify the process into four steps which spell the acronym DATA. Each step of the DATA Analytics Framework is explained below.

- Decisions: What decisions do you intend to make as a result of the analytical outputs? Depending on the project, whether personal or professional, certain decisions need to be made. For example, in a professional situation you may have to decide how much inventory to purchase, how many people to hire, or how much money needs to be raised to start a new company. In personal situations you might want to know how to improve your personal spending habits, or how much money is needed to buy a house. However, not every project will result in a concrete decision. For some projects, the decision may be to conduct more research or analysis based on a discovery that was revealed by the analysis.
- 2. Acquisition: What data must be acquired to inform the decisions you plan to make? Once you know what decisions you are trying to make, you will have a better idea of the data that is required to inform these decisions. For example, if you are trying to decide how to decrease personal spending, you might need to record and track all personal expenses such as rent, utility bills, food bills, etc. In the Data Design Example (Figure 1.1), the analyst needed to decide if the company was maintaining the proper amount of inventory. Therefore, inventory data for the company must be acquired.
- 3. **Time:** Over what period of time do you intend to collect and analyze data to support your decision? The purpose of this step is to determine the amount of data that will be required for a project over a certain period of time. As in the Data Design Example, if the analyst is intending to study a few years of sales and inventory data, the spreadsheet should be designed so that it is convenient to add new rows of data. Totals and summaries of the data could be placed above the dataset or in an entirely new spreadsheet.
- 4. **Analysis:** How will you analyze the data? This is perhaps the most complex component of the framework. This will require additional project-specific questions to be asked. For example, in the case of a personal budget you might ask, "Am I spending too much money on restaurants?" or "How much money do I spend a month?" These questions can lead to a few analytical possibilities. Each month we could analyze how much money is spent on restaurants as a percent to total spending for the month. We might also look at how much money is spent on restaurants for the year and see what months make up the highest percentage of the annual spend for this category. This step of the framework helps to identify calculations and analytical processes that need to be conducted to produce the most relevant outputs that can inform the decisions being made.

The DATA Analytics Framework will serve as the central component of the overall Data Analytics Model and should be used at the very beginning of a project. A summary of the framework is shown in Table 1.1.

TABLE 1.1 DATA Analytics Framework Summary

DATA Analytics Framework

- 1. Decisions: What decisions need to be made?
- 2. Acquisition: What data must be acquired?
- 3. Time: Over what time period, or how long will data be collected?
- 4. Analysis: How should the data be analyzed?

Conducting a Data Audit

Follow Along File: None

The use of the DATA Analytics Framework is relevant for projects that are started from a blank spreadsheet and when working with spreadsheets that are already created. Professionals often begin a data analytics project with a dataset that has been given to them on a spreadsheet. The DATA Analytics Framework is especially valuable when working with existing spreadsheets, as it provides the necessary guidelines to conduct a data audit. A **data audit** uses the DATA Analytics Framework to evaluate the data and the data design of an existing spreadsheet to determine if the goals of a project can be accomplished. Data audits also verify the scope of the data in a spreadsheet and its integrity to produce reliable outputs. Data audits are especially critical when working with big datasets, as it is not possible to visually inspect the data for errors.

Integrity Check

Data Audit

It is critical to conduct a data audit on any existing spreadsheet you did not create or on any dataset that is provided to you. The DATA Analytics Framework should be used to guide the data audit to verify the scope and validity of the dataset before conducting any analytics project. Failure to conduct a data audit may result in erroneous outputs and poor decisions.

Establishing Data Internal Controls

Follow Along File: None

It is common for professionals to create Excel spreadsheets that will be used by coworkers. In fact, several professionals may contribute to and use the same Excel workbook using the OneDrive cloud network featured on Microsoft Excel 365. While this creates a very efficient way to build comprehensive datasets that can provide significant decision making benefits, it can also lead to errors and possible data corruption. When you create a spreadsheet for an analytics project, you will know what can and cannot be done with the data. If you do not have a way of communicating these potential pitfalls to your coworkers, you increase the risk of your analysis producing erroneous outputs. Placing **data internal controls** into a spreadsheet decreases or eliminates the risk of your analysis becoming corrupt or distorted when other people use your spreadsheet.

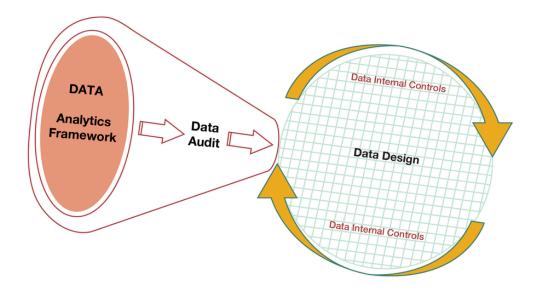
There are many tools that Excel provides that can serve as effective internal controls. For example, if a project contains many complex calculations that should not be tampered with, those cells can be password protected. If necessary, entire Excel worksheets or workbooks can be password protected. Some data internal controls can be as simple as typing instructions or warnings

data audit

The process of evaluating the design, scope, and integrity of a dataset to ensure reliable outputs can be produced to inform decisions.

data internal controls

Instructions and features added to a spreadsheet that decrease or eliminate the risk of an analysis becoming corrupt or distorted by errors incurred by other users of a shared spreadsheet.


at the top of a spreadsheet. These data internal controls, as well as several others, will be explored throughout this textbook.

The Data Analytics Model

Follow Along File: None

The four components of the Data Analytics Model are the DATA Analytics Framework, data audit, data design, and data internal controls. The DATA Analytics Framework can be viewed as the engine that provides guidance as to how a data audit should be conducted, how a spreadsheet should be designed, and what data internal controls should be established. The diagram below provides a visual depiction as to how the DATA Analytics Framework informs these three components of the Data Analytics Model.

FIGURE 1.2 Data Analytics Model Diagram

Limitations of Data Analytics

Follow Along File: None

While data analytics can be a powerful tool when making professional or personal decisions, it is not a perfect system. The analysis and corresponding decisions you make are only as good as the data you have. If there are problems with the validity or accuracy of the data used in a project, the outputs will not be effective in making good decisions. Another limitation is that data is always changing and therefore difficult to predict. For example, we don't know what the price of a certain stock will be tomorrow, next week, next month, etc. The same goes for sales in any given company. Data analytics can help us make educated guesses as to what we think the data might be in the future, but we will not know for sure until the data becomes a historical record. Most data analytics projects begin with data that occurred in the past. It is this past data that can help us predict the future. This is often referred to as **predictive analytics**. If the data used for a certain project is mostly consistent over a long period of time, the results of predictive analytics can be very reliable. However, data that drastically changes over time can completely change the results of a

predictive analytics

Using data analytics to predict what might happen in the future.

project that are used to make decisions. It is these extreme changes that are very difficult to predict. However, we can still evaluate these potential changes by conducting "what-if" analyses. For example, someone analyzing a stock portfolio might conduct a scenario analysis to see how much money would be lost if a stock were to fall 20%, or 50%. The results of this analysis may not help the person to understand if a particular stock is, in fact, going to drop a significant amount, but could establish a risk profile that could lead to other decisions being made to minimize losses in case that scenario were to occur. Even though there are limitations as to the predictive powers of data analytics, it can still produce valuable information that can help you make good decisions.

Key Takeaways

- The data you have and the way it is arranged are critical to successfully completing an analytics project.
- There are four steps to the DATA Analytics Framework that should be used prior to each project: what decisions will be made, what data should be acquired, define the time frame for the project, and establish how the data will be analyzed.
- The DATA Analytics Framework is the central component of the data analytics working model and informs data design, data audits, and data internal controls.
- You should always conduct a data audit on a spreadsheet that you are using but did not create or on a dataset that has been provided to you.
- To prevent a data analytics project from becoming corrupted, data internal controls should be added to your spreadsheet if it is going to be shared with other people.
- Predictive analytics are limited in determining future outcomes when the dataset that is analyzed contains drastic changes.
- Exercises such as "what-if" scenarios can be used to understand risks that might occur if drastic changes occur to the data you are analyzing.

1.2 A Review of Excel 365

Learning Objectives

- 1. Learn how to launch Microsoft Excel 365 and open a new workbook.
- 2. Become familiar with the Excel workbook and worksheets.
- 3. Learn how to navigate worksheets.
- 4. Understand the use of keyboard shortcuts and Key Tips.
- 5. Define cell addresses and cell ranges.
- 6. Review the Excel Ribbon.
- 7. Become familiar with the Quick Access Toolbar and Right-Click Menu.
- 8. Examine the Backstage View and software default settings.
- 9. Learn how to save workbooks on your computer.
- 10. Learn how to save and share workbooks on the OneDrive cloud.
- 11. Learn how to add headers and footers to a printed worksheet.
- 12. Review Page Layout commands to prepare a worksheet for printing.
- 13. Become familiar with Excel help features.

This section will introduce and review the features of Microsoft Excel 365. These skills are necessary to begin working in Excel whether you are starting a project from scratch or working with an existing Excel workbook. This section will also cover features for storing and sharing Excel workbooks on the cloud.

Launching Microsoft Excel 365

Follow Along File: None

There are a few different ways in which you can launch Microsoft Office Excel 365 on your PC. The following demonstrates three ways in which Excel can be launched. Any program that is currently open on your PC should be closed or minimized. You should be able to see your desktop in its entirety before starting.

- 1. Click the Start button on the lower left corner of your computer screen.
- 2. Click and drag the scroll bar down until the Excel icon is visible, as shown in Figure 1.3. The programs are listed in alphabetical order, so you will have to scroll down to the letter E.

FIGURE 1.3 Start Menu in Microsoft Windows 10

- 3. Click the Excel icon from the list of programs on the Start Menu. This will launch Excel.
- 4. Excel can also be launched by clicking the Excel icon pinned to the Start Menu. To pin Excel to the Start Menu, right click the Excel icon on the programs list as shown in Figure 1.4. Select the Pin to Start option from the Right-Click Menu.

Recycle Bin A. Right click here to open the menu. Joseph M Manzo **Desktop Notifications** \equiv B. Click here to pin Excel to the Start menu. Excel → Pin to Start More FastCopy FastCopy 🗓 Uninstall Feedback Hub Firefox Recent

FIGURE 1.4 Pinning Excel to the Start Menu

Once Excel is pinned to the Start Menu, you can launch it by clicking the icon as shown in Figure 1.5.

Company Sales Analysis.xlsx

Recycle Bin

Click here to launch Excel or click and drag onto your desktop to create a shortcut.

Solve a shortcut.

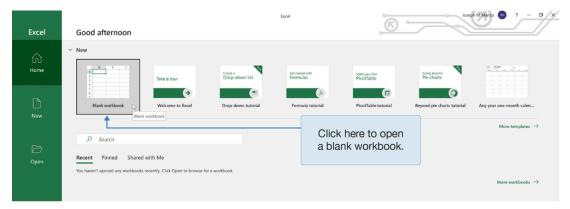
Access
Acrobat Reader 2017
Alarms & Clock
Avast Business Security

B
Bitvise SSH Client
Calculator
Calculator
Camera
Cisco
Cisco
Cornect
Connect
Cortana

FIGURE 1.5 Launching Excel from Pinned Icon on Start Menu

5. You can also launch Excel by double clicking the shortcut icon on your desktop as shown in Figure 1.6. To add an Excel shortcut to your desktop, click and drag the Excel icon shown in Figure 1.5 or Figure 1.4 onto your desktop.

FIGURE 1.6 Launching Excel from the Desktop Shortcut



The Excel Workbook

Follow Along File: None

Once Excel is launched, you will see the Excel Start screen as shown in Figure 1.7. Click the blank workbook option, and a blank workbook will be opened on your screen.

FIGURE 1.7 The Excel Start Screen

A **workbook** is an Excel file that contains one or more worksheets (also referred to as spread-sheets). Excel will assign a file name to the workbook, such as Book1, Book2, Book3, and so on, depending on how many new workbooks are opened. Figure 1.8 shows the appearance of a blank workbook.

workbook

An Excel file that contains one or more worksheets.